Impact of non-communicable diseases on immunity and Ojas focussing on type 2 Diabetes Mellitus – A scoping review

Authors

  • Reshma. M. A Senior Research Fellow Dept of Kriyasarira GAVC Tripunithura
  • Pradeep. K Associate Professor Dept of Kriyasarira GAVC Kannur
  • Abhilash. M Assistant Professor GAVC Tripunithura
  • Dhanya. N. S Assistant Professor GAVC Tripunithura
  • Anjali Sivaram Associate Professor GAVC Tripunithura

DOI:

https://doi.org/10.55718/kja.204

Keywords:

Non-communicable diseases, Immunity, Ojas, Type 2 Diabetes Mellitus, Gut microbiome

Abstract

Non communicable diseases (NCDs)are recognised as a major challenge in sustainable development. Among different types of NCDs, diabetes is connected to a number of other serious health problems. The projected rapid increase in diabetes prevalence, incidence, morbidity and mortality shows the necessity of developing new treatment strategies to combat the problem. In addition, diabetic patients are more susceptible to infections like urinary tract infections, lower respiratory tract infections and skin and soft tissue infections. Various studies were conducted to define the diabetes- associated mechanisms that impair the host’s defence against pathogens. These mechanisms mainly include defects in phagocytosis, suppression of cytokine production, failure to kill microbes, dysfunction of immune cells etc. Both innate and adaptive immunity are severely hampered in diabetes. The disease severity is associated with severe gut microbiota dysbiosis. In Ayurveda classics, ojakshayais described in the pathogenesis of madhumeh aand there is both qualitative and quantitative kshaya of aparaojas. This article discusses about different effects of T2DM on immune system which in turn promotes the different infections, gut microbiota dysbiosis and status of ojakshaya in Prameha.

References

Damasceno A. Noncommunicable Disease. Heart of Africa: Clinical Profile of an Evolving Burden of Heart Disease in Africa. 2016. 155–157 p.

National Health Mission. Module for multi purpose workers (mpw) female/male on prevention, screening and control of common non communicable diseases. 2018;68. Available from: http://nhsrcindia.org/sites/default/files/Multi-Purpose Workers on Prevention Screening Control of NCDs-English.pdf

Balasopoulou A, Κokkinos P, Pagoulatos D, Plotas P, Makri OE, Georgakopoulos CD, et al. Symposium Recent advances and challenges in the management of retinoblastoma Globe ‑ saving Treatments. BMC Ophthalmol *Internet+. 2017;17(1):1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28331284 http://www.pubmedcentral.nih.gov/article PMC5354527

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2019;16(5):442–9.

Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy , HHS Public Access. Cancer Cell. 2015;2(1):1–17.

de Souza Prestes A, dos Santos MM, Ecker A, de Macedo GT, Fachinetto R, Bressan GN, et al. Methylglyoxal disturbs the expression of antioxidant, apoptotic and glycation responsive genes and triggers programmed cell death in humanleukocytes. Toxicol Vitr *Internet+. 2019;55:33–42. Available from: https://doi.org/10.1016/j.tiv.2018.11.001

Ilyas R, Wallis R, Soilleux EJ, Townsend P, Zehnder D, Tan BK, et al. High glucose disrupts oligosaccharide recognition function via competitive inhibition: A potential mechanism for immune dysregulation in diabetes mellitus. Immunobiology. 2011;216(1–2):126–31.

Qin X, Goldfine A, Krumrei N, Grubissich L, Acosta J, Chorev M, et al. Glycation Inactivation of the Complement Regulatory Protein CD59. Diabetes. 2004;53(10):2653–61.

Hinkmann C, Knerr I, Hahn EG, Lohmann T, Seifarth CC. Reduced frequency of peripheral plasmacytoid dendritic cells in type 1 diabetes. Horm Metab Res. 2008;40(11):767–71.

Seifarth CC, Hinkmann C, Hahn EC, Lohmann T, Harsch IA. Reduced frequency of peripheral dendritic cells in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2008;116(3):162–6.

Gonzalez L, Trigatti BL. Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis: A Rapidly Advancing Field with Clinical Relevance to Imaging and Therapy. Can J Cardiol *Internet+. 2017;33(3):303–12. Available from: http://dx.doi.org/10.1016/j.cjca.2016.12.010

Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med *Internet+. 2015;21(7):815–9. Available from: http://dx.doi.org/10.1038/nm.3887

Joshi MB, Baipadithaya G, Balakrishnan A, Hegde M, Vohra M, Ahamed R, et al. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep. 2016;6(October):1–15.

García AG, Rodríguez MR, Alonso CG, Ochoa DYR, Aguilar CA. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab J. 2015;39(1):59–65.

Ridzuan N, John CM, Sandrasaigaran P, Maqbool M, Liew LC, Lim J, et al. Preliminary study on overproduction of reactive oxygen species by neutrophils in diabetes mellitus. World J Diabetes. 2016;7(13):271.

Kraakman MJ, Lee MKS, Al-Sharea A, Dragoljevic D, Barrett TJ, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127(6):2133–47.

Piątkiewicz P, Miłek T, Bernat-Karpioska M, Ohams M, Czech A, Ciostek P. The dysfunction of nk cells in patients with type 2 diabetes and colon cancer. Arch Immunol Ther Exp (Warsz). 2013;61(3):245–53.

Piątkiewicz P, Bernat-Karpioska M, Miłek T, Rabijewski M, Rosiak E. NK cell count and glucotransporter 4 (GLUT4) expression in subjects with type 2 diabetes and colon cancer. Diabetol Metab Syndr. 2016;8(1):1–8.

Berrou J, Fougeray S, Venot M, Chardiny V, Gautier JF, Dulphy N, et al. Natural Killer Cell Function, an Important Target for Infection and Tumor Protection, Is Impaired in Type 2 Diabetes. PLoS One. 2013;8(4).

Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A. 2008;105(32):11287–92.

Lv X, Gao Y, Dong T, Yang L. Role of natural killer T (NKT) cells in type II diabetes-induced vascular injuries. Med Sci Monit. 2018;24:8322–32.

Liu F, Wang H, Feng W, Ye X, Sun X, Jiang C, et al. Type 1 innate lymphoid cells are associated with type 2 diabetes. Diabetes Metab. 2019;45(4):341–6.

Jiska Cohen-Mansfield, Maha Dakheel-Ali, MDb, Marcia S. Marx, PhDb, Khin Thein, MDb, and Natalie G. Regier P, Waage et al HHS Public Access. Physiol Behav. 2017;176(1):139–48.

Farnsworth CW, Schott EM, Benvie A, Kates SL, Schwarz EM, Gill SR, et al. Exacerbated Staphylococcus aureus Foot Infections in Obese/Diabetic Mice Are Associated with Impaired Germinal Center Reactions, Ig Class Switching, and Humoral Immunity . J Immunol. 2018;201(2):560–72.

Diepersloot RJA, Bouter KP, Beyer WEP, Hoekstra JBL, Masurel N. Humoral immune response and delayed type hypersensitivity to influenza vaccine in patients with diabetes mellitus. Diabetologia. 1987;30(6):397–401.

McMichael a J, Gotch F, Cullen P, Askonas B, Webster RG. The human cytotoxic T cell response to influenza A vaccination. Clin Exp Immunol *Internet+. 1981;43(2):276–84. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1537292&tool=pmcentrez&rendertype

Sheridan PA, Paich HA, Handy J, Karlsson EA, Schultz-Cherry S, Hudgens M, et al. The antibody response to influenza vaccination is not impaired in type 2 diabetics. Vaccine *Internet+. 2015;33(29):3306–13. Available from: http://dx.doi.org/10.1016/j.vaccine.2015.05.043

Martinez PJ, Mathews C, Actor JK, Hwang SA, Brown EL, De Santiago HK, et al. Impaired CD4+ and T-helper 17 cell memory response to Streptococcus pneumoniae is associated with elevated glucose and percent glycated hemoglobin A1c in Mexican Americans with type 2 diabetes mellitus. Transl Res *Internet+. 2014;163(1):53–63. Available from: http://dx.doi.org/10.1016/j.trsl.2013.07.005

Kumar NP, Sridhar R, Nair D, Banurekha V V., Nutman TB, Babu S. Type 2 diabetes mellitus is associated with altered CD8+ T and natural killer cell function in pulmonary tuberculosis. Immunology. 2015;144(4):677–86.

Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol. 2020;11(July).

Barkai LJ, Sipter E, Csuka D, Prohászka Z, Pilely K, Garred P, et al. Decreased ficolin-3-mediated complement lectin pathway activation and alternative pathway amplification during bacterial infections in patients with type 2 diabetes mellitus. Front Immunol. 2019;10(MAR):1–10.

Patel PN, Sah P, Chandrashekar C, Vidyasagar S, Venkata Rao J, Tiwari M, et al. Oral candidal speciation, virulence and antifungal susceptibility in type 2 diabetes mellitus. Diabetes Res Clin Pract *Internet+. 2017;125:10–9. Available from: http://dx.doi.org/10.1016/j.diabres.2017.01.001

Jhugroo C, Divakar DD, Jhugroo P, Al-Amri SAS, Alahmari AD, Vijaykumar S, et al. Characterization of oral mucosa lesions and prevalence of yeasts in diabetic patients: A comparative study. Microb Pathog *Internet+. 2019;126:363–7. Available from: https://doi.org/10.1016/j.micpath.2018.11.028

Javid A, Zlotnikov N, Pětrošová H, Tang TT, Zhang Y, Bansal AK, et al. Hyperglycemia impairs neutrophil-mediated bacterial clearance in mice infected with the Lyme disease pathogen. PLoS One. 2016;11(6):1–20.

Kumar S, Ramachandran R, Mete U, Mittal T, Dutta P, Kumar V, et al. Acute pyelonephritis in diabetes mellitus: Single center experience. Indian J Nephrol. 2014;24(6):367–71.

Yano H, Kinoshita M, Fujino K, Nakashima M, Yamamoto Y, Miyazaki H, et al. Insulin treatment directly restores neutrophil phagocytosis and bactericidal activity in diabetic mice and thereby improves surgical site staphylococcus aureus infection. Infect Immun. 2012;80(12):4409–16.

Lin JC, Siu LK, Fung CP, Tsou HH, Wang JJ, Chen CT, et al. Impaired phagocytosis of capsular serotypes K1 or K2 Klebsiella pneumoniae in type 2 diabetes mellitus patients with poor glycemic control. J Clin Endocrinol Metab. 2006;91(8):3084–7.

Chanchamroen S, Kewcharoenwong C, Susaengrat W, Ato M, Lertmemongkolchai G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun. 2009;77(1):456–63.

Riyapa D, Buddhisa S, Korbsrisate S, Cuccui J, Wren BW, Stevens MP, et al. Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun. 2012;80(11):3921–9.

Easton A, Haque A, Chu K, Lukaszewski R, Bancroft GJ. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J Infect Dis. 2007;195(1):99–107.

Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, Hernandez-Pando R, Castañeda-Delgado JE, Lugo-Villarino G, et al. Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz. 2018;113(4):1–11.

Tripathi D, Radhakrishnan RK, Thandi RS, Paidipally P, Devalraju KP, Neela VSK, et al. Erratum: IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis (PLoS Pathogens (2019) 15:12 (e1008140) DOI: 10.1371/journal.ppat.1008140). PLoS Pathog. 2021;17(5):1–21.

Farnsworth CW, Shehatou CT, Maynard R, Nishitani K, Kates SL, Zuscik MJ, et al. A humoral immune defect distinguishes the response to Staphylococcus aureus infections in mice with obesity and type 2 diabetes from that in mice with type 1 diabetes. Infect Immun. 2015;83(6):2264–74.

Mathews CE, Brown EL, Martinez PJ, Bagaria U, Nahm MH, Burton RL, et al. Impaired function of antibodies to pneumococcal surface protein A but Not to capsular polysaccharide in Mexican American adults with type 2 diabetes mellitus. Clin Vaccine Immunol. 2012;19(9):1360–9.

Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2022;14(1).

Kumar R, Mishra D, Kumar M, others. Madhumeha: A Term Often Misused for Diabetes Mellitus. Int J Heal Sci Res. 2018;8(5):272–6.

Bagde AB, Sawant RS, Yanpallewar SU, Nikumbh MB, Dhimdhime RS. Ojas: the Vital Nectar of Life. J Biol Sci Opin. 2014;2(2):203–6.

Charaka samhita of agnivesh elaborated by Caraka & Dridhabala, Ayurveda dipika commentary by Chakrapanidatta, edited by jadavji trikamji Acharya, Chaukhambha publications, Nidanasthana 4th, 37th verse.p.215.

Charaka samhita of agnivesh elaborated by Caraka & Dridhabala, Ayurveda dipika commentary by Chakrapanidatta, edited by jadavji trikamji Acharya, Chaukhambha publications, Chikitsasthana 6th.p.445.

Charak samhitha with Charak Chandrika Hindi commentary by Dr Brahmanand Tripathi and Dr Ganga Sahay Pandey, Sutrasthana 30th, verse 7th. p.560

Downloads

Published

31-12-2023

How to Cite

Reshma. M. A, Pradeep. K, Abhilash. M, Dhanya. N. S, & Anjali Sivaram. (2023). Impact of non-communicable diseases on immunity and Ojas focussing on type 2 Diabetes Mellitus – A scoping review. Kerala Journal of Ayurveda, 2(4). https://doi.org/10.55718/kja.204

Issue

Section

Review Article